Pre-clage Warm-up!!!

Suppose that A isan m x n matrix (m rows,
n columns) and that Ax =0 has a unique
solution. Which of the following statements is
sometimes false?

a. The columns of A are linearly
independent.

b. The columns of A span a space of
dimension n.

c. The columns of A are a basis for the space
they span.

d m<n




Pre-clage Warm-up!!!

Which of the following are subspaces of
the vector space of all functions R -> R?

a. The set of all functions f such that
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Section 4.7: General vector spaces

| Z
We study: I 34
* vector spaces of matrices Se
e Vector spaces of functions lile Ssmx ~Sun=

e Vector spaces of polynomials S

e Solution spaces to homogeneous
differential equations

We identify subspaces and find bases in
some cases. A more systematic treatment of

independence of functions is given in
Section 5.1.

You will not be tested on: the justification that the

algorithm to find partial fraction decompositions
works, in Example 5.
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Matrices = 3x2 meM X }DB'W\O\ vectoy

Let M_{m,n} denote the setof mxn

matrices. This is a vector space. jl’
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It has basis the matrices E_{i,j}. =
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Question like Section 4.7, 1-4.
Which of the following are subspaces of

M_{3,3}? / Lrace (f\@) w =A+wf
a. Matrices of trace 0. Te%

No /

b. Matrices of trace 5. Yes
c. Matrices of determinant 1.

Yes/ No
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d. Upper triangular matrices.
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Polynomials

Example (like example 4 from Section 4.4
and Example 6 in Section 4.7):

_ R
Let V be the set of polynomials
O, + A% + a x> + a,

(@) Show that V has dimension 4.
(b) Show that 1, T+x, x+x/A2, xA\2+xA3 is a
basis for V.
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Polynomials Questions like Section 4.7, 9-12.

In the book, P_n denotes the set of all
polynomials of degree <n. Itis a space of
dimension n + 1.

Which of the following are subspaces of P_5 ¢

a. The polynomials p(x) with a_2 =0.

.

b. The polynomials p(x) with a_2 =1.

Yes




Like Section 4.7 questions 13-16 as well as
questions in 5.1. In 5.1 we learn a different
approach to testing if functions are independent.

Which of the following sets of functions are
independent?

a. eAx and sin x
b. Inx and In(xA\2)
C. cos X +2sinx and 2 cos x + sin x.

d. enrx, sinx and 1.
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Like Section 4.7 question 25:
Find a basis for the solution space of y” + 3y’ = 0.




Question:
Do the following matrices form a basis for M_{2,2} ?

. ()RR oo

No

o | [
b. What about [;’i ?J, [; o]) [D ,O} ¢
Yes

No




